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Germany 
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Abstract. With appropriate boundary conditions the anisotropic XY chain in a magnetic field is 
known IO be invariant under quantum group transformations. We generalize this model defining 
a class of integrable chains with several fermionic degrees of freedom per site. In order to 
maintain the quantum group symmetry a general condition on the parameten of these systems 
is derived. it is shown that the carresponding quantum algebra is a multi-parameter deformation 
of the Clifford algebra. Discussing P specid physical example we observe a new type of zero 
mode. 

1. Introduction 

In statistical mechanics the anisotropic X Y  chain is one of the simplest exactly solvable 
models. Its L-site Hamiltonian with periodic boundary conditions 

L L 
(1.1) 

depends on two parameters, namely the anisotropy parameter 9 and the magnetic field h 
(5x's'g are Pauli matrices acting on site j ) .  This Hamiltonian appears in the domain 
wall theory of two-dimensional commensurateincommensurate phase transitions [ 1,2] and 
provides a good model for Helium adsorbed on metallic surfaces. It also describes the 
maser equation of the kinetic king model [3] and plays a role in onedimensional reaction- 
diffusion processes [4]. 

The present work is based on the investigation of the anisotropic X Y  chain with a 
special kind of boundary condifiopls defined by the Hamiltonian 

Hi:(??. h)  = -; (4u;u;*l + 4 -1 U] Y uj+J Y - h U; 

j = l  j=l 

where q is related to the magnetic field by 2h = q+q-'  (notice that compared to (1.1) there 
are additional surface fields at the ends of the chain). These boundary conditions make the 
system invariant under quantum group transformations [5-7]. Beside their mathematical 
relevance these boundary conditions are also of physical interest since they appear naturally 
in a special one-dimensional reaction-diffusion process with open ends 141. 

Beside the X Y  chain there are many other quantum chains where a quantum group 
symmetry can implemented by choosing appropriate boundary conditions with q-dependent 
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surface terms. As an important example there is the class of SU(PIM),-invariant Perk- 
Schultz chains [8,9] which includes the isotropic XY chain [5] and the X X Z  Heisenberg 
chain [IO]. Quantum group symmetries may also play a role for quantum chains in the 
thermodynamic limit [ l l ]  and for chains with cyclic boundary conditions, for example, the 
X X Z  chain with toroidal boundary conditions 1121 and n-state Vertex models with periodic 
boundary conditions 1131. 

The attempts to introduce diagonalizible generalizations of the XY model go back 
to Suzuki [14]. Following these ideas we consider generalized quantum chains with a 
higher number of degrees of freedom per site. We maintain the quantum group symmetry 
by choosing special boundary conditions and imposing appropriate restrictions on the 
parameters. We are interested in both the physical properties of these generalized chains 
(like their spectra) and the mathematical structure of the corresponding quantum algebra, 

Let us briefly summarize the results of [6]. The XY chain Hamiltonian (1.2) is invariant 
under a two-parameter quantum Clifford algebra which is defined by the generators T’, TZ 
and the central element E with the commutation relations 

[TI, T’) = 2[E]., 
(7-1, TZf = o  

[TZ, TZI = 2 [ E l ,  
[ E ,  T’J = [ E .  7.21 = 0 

( 1.3) 

where a!l and 012 are deformation parameters and 

The coproducts of these generators read 

For a!’ = a ! ~  = 1 the system undergoes a Pokrovski-Talapov phase transition [ I ] .  Here the 
quantum algebra (1.3) reduces to the (classical) Clifford algebra 

[T’, T”) = 2E6”” [E,T’] = 0 p, U = 1 , z .  (1.6) 
Apart from the trivial one-dimensional representation the algebra (1.3) has only two-dimen- 
sional irreducible representations, in particular the fermionic representation corresponds to 
taking T 1  = ax, T2 =cy, and E = 1 .  

The explicit expressions for the generators in the case of the XY chain can be obtained 
from the fermionic (one-site) representation by a multiple application of the coproducts (1.5). 
In order to do so, let us introduce local fermionic operators TI and z,? by a Jordan-Wigner 
transformation 

which obey the Clifford algebra 

{ z r , r / ]  =26#” i ,  j = I ,..., L. @ , U  = 1.2. (1.8) 
In terms of these operators the Hamiltonian (1.2) can be written as 
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The explicit expressions for the generators T I ,  T 2  and E read 

where 

ff2 = 411 (1.11) 

are the deformation parameters. Both of them are essential, i.e. it is impossible to remove 
one of the parameters by similarity transformation. Furthermore notice that the generator 
E simply counts the number of sites. Therefore if one of the deformation parameters is a 
root of unity, the irreducible representations of the algebra (1.3) depend on the length of 
the chain which requires the definition of a special thermodynamical limit in this case [6]. 

The generators (1.10) commute with the Hamiltonian and appear physically as a 
fermionic zero mode. This zero mode is present for arbitrary parameters q and 11 and causes 
all levels of the spectrum to be at least two-fold degenerated. We want to emphasize that 
such a zero mode cannot be observed in the case of periodic or free boundary conditions. 
In other words, the quantum group symmetry is directly related to the special boundary 
conditions in (1.2). 

If both deformation parameters a1 and cuz coincide, we have the isotropic case 0 = 1 .  
Here the total magnetization Si = E;=, U; commutes with the Hamiltonian and generates 
an additional U(1) symmetry. This allows the quantum algebra (1.3) to be enlarged by 
adding the commutation relations 

9 
011 = - 

rl 

[TI .  NI = 2iT [ T 2 ,  NI = -2iT' [ E . N ] = O  (1.12) 

and the coproduct 

A ( N )  = N 8 1 +  18 N (1.13) 
where N = $(ST + L) .  The resulting algebra is the Uq[SU(l/l)] superalgebra [5]. 

A first attempt to generalize the quantum group invariant XY chain has been made 
in [15]. Defining a 2M-dimensional affine Clifford-Hopf algebra and using an R-matrix 
approach the author showed that the generalized XY chain introduced by Suzuki [I41 

A = - ~ ~ ( . i . , k U ~ U f + ~  + .iy,ku,?u,?+k)uy+1 . . . U/+k-l f h 

possesses a quantum group symmetry provided that L' = L m  for some integer m and 

x L' L' 

k=l j = l  j=l  
(1.14) 

jx.k = - J ~ s ~ . ~  j y . k  = -J~s, , , ,~  k = 1,. . .~ K .  (1.15) 
This case is trivial for the following reason. If one performs the transformation 

(1.16) 

one obtains the Hamiltonian 

which is a sum of m identical anisotropic XY chains. Since the transformation (1.16) 
does not change the algebra of the Pauli matrices, f? and f?' differ only by a similarity 
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transformation. Therefore the physical properties of 2 are already known. In this paper we 
show that it is possible to define non-trivia6 generalizations of the X Y  chain maintaining 
both the quantum group symmetry and the integrability in terms of free fermions. In 
contrast to 1151 we start from the physical point of view generalizing the X Y  chain directly 
in its fermionic formulation (1.9). In order to implement the quantum group symmetry 
we then derive a general condition for the existence of zero modes. As an example we 
consider a four-state quantum chain defined on two commuting copies of Pauli matrices 
U;”*‘ and $’,‘. Its Hamiltonian depends on ten parameters including one normalization 
parameter 

ff(Yl,Y2, M , Y 4 , 0 1 2 , ~ 4 , W I 4 , W 2 3 , ~ 1 3 ~ ~ 4 )  

1 - I  1 
+034(y;lv4 ep;+le:+l  MY^ e,Y~;tle&.l + n ~ 4  e: + Y; v4 ejtl) 

+ MY4 cj ej~j+lejtl - Y I Y ~ $ ~ :  -y1 Y+ oj+le;+l) 

- - W ~ ~ ( Y ; ~ Y ~ ~ , Y U ; + ~  +yZy3 oj ejojtlejtl - y2w;PejX - Y~ v3 uj+le;+l) 
-013  (y;iney$tl - Y I Y ~  - 1 y z z  uj ejuj+lg;+l + vIn$ey +y;’Y;i~/tle;+l) 

+w=(v;1v4eTu;+l - - 1 X E z  uj ej~jtle;+l + nv4~j”e; 
+v;’ &-I qt I @;+I)] , 

- 1 Y 2 2  Y -I -I Y 

- 1 1 . z z  x -I -I x 

(1.18) 
Although at first sight this Hamiltonian seems to be rather artificial we will see that it is 
indeed a natural generalization of the X Y  chain Hamiltonian (1,2). We will show that this 
chain is invariant under a four-parameter deformation of the Clifford algebra. This quantum 
algebra is defined by the generators TI, TZ, T3, T4 and E with the commutation relations 

(1.19) 
where olP = v i  (p = 1, , . . ,4) are four deformation parameters. As in the case of the X Y 
chain, we observe additional symmetries if some of these parameters coincide. 

The model defined in (1.18) can be understood as a system of two interacting X Y  

[TP, T”] = 26’” [E],+ [ E ,  7 9  = 0 p, U = 1, .  . . , 4  

chains: et e2 e3 e 4  es e6 

.... 

‘SI 0 2  0 3  a4 U5 06 

In opposition to a single XY chain (which is completely described by the deformation 
parameters) its Hamiltonian depends on six further parameters wij which do not occur in 
the quantum algebra and cannot generally be eliminated by similarity transformation. Since 
these parameters allow the implemention of non-trivial couplings between the XY chains 
without breaking the quantum group symmetry, we expect a richer structure than in the 
case of two decoupled X Y  chains as in (l,l4). However, switching off these couplings by 
taking w13 = 014 = ~ %  = 024 = 0 and performing the following automorphism on the 
Pauli matrices: 

(1.20) 



Four-state models and Clifford algebras 5397 

the Hamiltonian (1.18) decouples into a sum of two independent anisotropic XY chains 

H ( n ,  Y2,  Y3, Y 4 . 0 1 2 , 0 3 4 )  
L-l 

= - a ~[o12(Y;1Yzo j*o j ; I  + YlYZ -1 0; Y U;+] Y + nnq + Y, -1  Y2 -1 U,+l) z 

j=l 

(1.21) - I  Y Y - I  -1 1 
+034 (v;’~4ej”ej”+~ + w4 ejej+l + nnej + Y, y4 ejtL)1 

where W I Z  and 
As an application we finally consider the Hamiltonian (1.18) for a particular choice of 

the parameters wij so that the strength of the couplings between the two XY chains can 
be controlled by a single parameter 8 .  Computing the corresponding spectrum we observe 
that for 8 = i l  the interaction becomes singular so that one obtains ZL+’-fold (instead of 
four-fold) degenerations. The supplementary symmetry is caused by L - 1 additional zero 
modes. Normally, zero modes are known to be exponential modes acting globally on the 
whole chain. Contrarily the additional zero modes turn out to act only in a specific part of 
the chain. We thereby find a new type of zero modes which cannot be observed in the case 
of two-state models. 

Another interesting approach towards a generalization of two-state models is to consider 
supersymmetric quantum chains 1161. Following these ideas it is possible to introduce an 
integrable supersymmetric generalization of the X Y  chain. However, such a model always 
decouples into sectors described by conventional X Y  models with site-dependent coupling 
constants, and therefore there is no connection to the present type of generalizations (where 
we have site-independent interactions). In particular if one tries to restore a quantum group 
symmetry in a supersymmetric X Y  chain, one always recovers the usual two-dimensional 
algebra (1.3). 

The paper is organized as follows. In section 2 we define the class of quantum chains 
to be investigated and outline the diagonalization method. In section 3 we derive a general 
condition for the existence of fermionic zero modes. Section 4 discusses the slmcture of 
the corresponding quantum algebra which is a multi-parameter deformation of the Clifford 
algebra. It is also shown that if some of the deformation parameters coincide, additional 
algebra automorphisms allow the number of free parameters to be reduced. In section 5 
we turn our attention to a particular physical four-state model. We discuss our results 
and consider a special case where additional zero modes occur. Finally we summarize our 
conclusions in section 6. In an appendix we show that a recently discovered duality property 
of the anisotropic XY chain 1171 also exists in the generalized case. 

appear as normalization constants. 

2. Multifermionic chains and their diagonalization 

In order to define a natural generalization of the X Y  chain, we first rewrite the fermionic 
version of the Hamiltonian (1.2) in the general bilinear form 

L-l 2n 

H(A, B, C) = $ i c  (AP,”$‘T,?+~ + iB’.”s’LsU I I + z h Y ” z ”  ;+I 5” i + l )  (2.1) 
j=l  @.”=I 

where n = 1 and 
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We consider the Hamiltonian (2.1) for n z 1 pairs of local fermionic operators rj” per site 
These operators are supposed to obey the Clifford algebra 

[$,r / )  = 2 & j P  i, j =  I . . ,  L @,U = I ,..., 2n (2.3) 

and therefore the 2n x 2n matrices B and C can be assumed to be antisymmetric (since 
symmetric contributions would result in an irrelevant constant). This defines a 2n-state 
model which is a natural generalization of the X Y chain in the fermionic language. As we 
will see below, the four-state Hamiltonian (1.18) just corresponds to the case n = 2. 

Since the 
Hamiltonian (2.1) is bilinear in the operators rj”, it is possible to apply standard methods 
described in [IS]. Accordingly H can be written in the diagonal form 

We are now going to diagonalize these generalized quantum chains. 

where A i  are fermionic excitation energies and T: are Clifford operators as well 

( T ~ . ~ ” ] = 2 G ~ ~ S I L y  k , I = 0  ,..., L - 1  @ , ~ = l , . . . ,  2n. (2.5) 

They are related to the local fermionic operators rr by an orthogonal transformation: 

Thus the expressions i7‘pTp-l in (2.4) commute pairwise and have the eigenvalues *l so 
that the knowledge of all excitation energies A: allows the spectrum of the Hamiltonian (2.1) 
to be constructed by taking all combinations into account. As shown in [IS] the excitation 
energies A: and the transformation coefficients +:; are solutions of the eigenvalue problem 

(2.7) M(”@[; = GiA: ??;/ y = 1,. . . , n I.L = 1, . . . ,2n 
i.v 

where @:/ = @;,;-’’” =k @;,yP and M is the following 2nL x 2nL matrix: 

A (-.. B + C  A 
-AT B + C  A M =  ... ... ... 

-AT B + C  A 
-AT C 

Since M is antisymmetric we expect its eigenvalues to occur in pairs with different signs. 
We thus are free to choose the sign of AI.  However, the spectrum does not depend on this 
choice. 

Let us summarize our results at this stage. We have constructed a class of Hamiltonians 
of the form (2.1) defined on n pairs of fermionic operators per site. These chains depend on 
2n2 - n parameters (including one normalization parameter) which are arranged in 2n x 2n 
matrices A, B and C. Their spectra can be determined by solving the reduced eigenvalue 
problem (27). In the following section we are going to derive an additional condition on the 
matrices A, B and C in order to implement the quantum group symmetry and to eliminate 
non-essential parameters. 
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3. A condition for the existence of zero modes 

In case of the XY chain the quantum group symmetry appears as a fermionic zero mode 
Ao = 0 for arbitrary parameters q and 4. Our aim is to implement a similar structure in 
the case of generalized chains (2.l), According to (2.7) zero modes are solutions of the 
system of equations xi"=, ZE, M r @ t J  = 0. Since it seems to be impossible to solve 
this problem in general, one needs an additional condition. In fact, we have shown that the 
systems of equations simplifies essentially if the matrices A, B, and C satisfy the condition 

(3.1) 
This zero mode condition is assumed to be valid throughout the rest of this paper. It implies 
that the components of the zero mode eigenvectors +t,j = (@(;, . . , , @ty)  obey a simple 
power-law 

A' + CA-IB = 0 .  

+g,j = (-A-'B)j-l+i,l. (3.2) 
It is easy to check that for n = 1 the matrices (2.2) satisfy the zero mode condition. 

Let us consider the generalized case n > 1. In order to simplify the eigenvectors (3.2) 
and remove unessential parameters one can use the invariance of the Clifford algebra (1.8) 
under orthogonal transformations O(2n): 

(3.3) 

Therefore a change of basis 

A + A' = OAO' B + B' = 0 BOT C + C = OCOT (3.4) 

H(A', B', C) = U H(A, B, C)U-] . (3.5) 

(-A-'B)" = or,P". (3.6) 

corresponds to a similarity transformation of the Hamiltonian (2.1): 

This allows us to choose a basis where the matrix -A-IB in (3.2) is already diagonal: 

According to (2.6) the zero mode operators then read 

j = l  

Because of A: = 0 (cf equation (2.4)) these operators commute with H(A, B, C) and 
therefore all levels of the spectrum are at least 2"-fold degenerated. As will be seen in the 
next section, they appear as the generators of the corresponding quantum algebra. 

Another very useful advantage of the zero mode condition (3.1) is a further simplification 
of the eigenvalue problem (2.7). It turns out that the eigenvalues of M (beside the zero 
modes A t  = 0) are the solutions of the polynomial 

where k runs from 1 to L - 1. This polynomial contains only even powers of A i  (due to 
the freedom of choosing its sign) and yields the dispersion relation of the chain. 

Notice that the zero modes are always related to exponential wavefunctions and cannot 
be derived from (3.8). Here it is useful to give some comment. It is a well known property 
of integrable quantum chains with open boundary conditions that beside excitations with 
trigonometric wavefunctions there is always a set of exceptional excitations with exponential 
behaviour. In the thermodynamic limit L -+ 03 these wavefunctions are located at the ends 

det(-A'e-"k/L + (B + C - 2iAL) + = 0 (3.8) 
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of the chain and have a vanishing energy contribution. In our models a special choice of the 
boundary conditions causes these excitation energies to vanish exactly for  finite L giving 
the exponential wavefunctions the physical meaning of zero modes. 

Hamiltonians of the form (2 .1)  obeying the zero mode condition (3.1) in the basis (3.6) 
can be constructed by choosing an arbitrary diagonal 2n x 2n matrix r and an arbitrary 
antisymmetric 2n x 2n mabix !2 so that the matrices 

A = -r!2r-1 B = rQr c=  r 1 ! 2 r 1  (3.9) 

satisfy the zero mode condition (3.1) and -A-'B = rz is already diagonal. The 
corresponding Hamiltonian H(Q, r) therefore depends on 2n2 + n parameters (including 
one normalization parameter). Let us illustrate this construction for the case n = 2.  With 

(3.10) 

we obtain a ten-parameter Hamiltonian with two fermionic zero modes. Their deformation 
parameters cylr in (3.7) are simply given by up = y,'. Then by means of a generalized 
Jordan-Wigner transformation 

one is led directly to the ten-parameter Hamiltonian (1.18), It is now clear that the somewhat 
artificial appearance of this Hamiltonian is nothing but a simple consequence of Jordan- 
Wigner factors while in the fermionic formulation the generalization is a quite natural one. 

We now apply (3.8) in order to compute the spectrum of the Hamiltonian (2.1), One 
obtains the fermionic excitation energies 

where 

2 2 

(3.12) 

(3.13) 

(3.14) 

The levels of the spectrum can be computed by taking all fermionic combinations into 
account (see equation (2.4)). Because of the zero modes 12; = A i  = 0 each level is at least 
four-fold degenerated. Obviously the spectrum is massless if at least one of the deformation 
parameters is on the unit circle. Moreover we observe that the spectrum is invariant under 
discrete transformations -+ a i L .  This symmetry is related to a generalized duality 
property and will be discussed in the appendix. 
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If the Hamiltonian (2.1) satisfies the zero mode condition (3.1), it is invariant under a 
2n-parameter deformation of the Clifford algebra. This quantum algebra is defined by the 
commutation relations 

{T’, Tu) = 26P”[E], 

A ( T c )  =a;/’ @ T!’ + T’ @ 

[ E ,  T S ]  = 0 p., U = I , .  . , ,2n (4.1) 

(4.2) 

and the coproducts 

p. = 1,. . . ,2n 
A ( E )  = E @  1 +  I @  E p, v = 1, .  . . ,2n (4.3) 

with the co-unit E ( T @ )  = € ( E )  = 0 and the antipode S(T’’) = TP and S ( E )  = - E .  This 
algebra has been given in a similar form in [19], where 2n distinct central elements and 
one deformation parameter have been used (instead of 2n deformation parameters and one 
central element E in our case which leads to a different representation theory). Notice 
that by construction of our model the dimension of the algebra (4.1) is always even (the 
odd case, however, is also possible but not of interest in this paper). If all deformation 
parameters a,, . . .,orb are equal to one, the algebra reduces to the (classical) Clifford 
algebra ( T p ,  Tu) = 26””. Beside the trivial one-dimensional representation T” = E = 0 
the algebra (4.1) possesses only 2n-dimensional irreducible representations of the form 

T’ = f i t ’  E = e l  (4.4) 

where e is a number and the t @  denote a canonical representation of the 2n-dimensional 
classical Clifford algebra [P, i”} = 2 P ” .  For n = 2 a possible choice is 

(4.5) 

In particular, the fermionic representation corresponds to taking e = 1. The coproduct (4.2) 
then explicitly reads 

t + l =  a x 81 t-I =aY@l t+Z=a‘@a’ t - 2 = u z @ u Y .  

A@!’) = al / ’ tkf l  P @ t P  + ~ r - ] / ~ t ’  ’ @ 1 (4.6) 

where rzn+l = uz 8 uz plays the role of a grading operator. By a multiple application of 
this coproduct we obtain the L-site representation 

These generators are nothing but the zero mode operators defined in (3.7). They commute 
with the Hamiltonian (2.1) and therefore the chain is invariant under the deformed Clifford 
algebra (4.1). 

If one of the deformation parameters 0 1 1 ,  . . , , a b  is a root of unity (i.e. the parameters 
are non-generic) the RHS of (4.1) may vanish. In this case the two-dimensional irreducible 
representations (4.4) break down and only the trivial one survives. In the spectrum 
non-generic cases appear as level crossings. Here the Hamiltonian possesses zero-norm 
eigenvectors and one has to consider an appropriate subspace and a redefined scalar product. 
However, we do not want to discuss this case and therefore we will assume the deformation 
parameters to be generic. 

If some of the deformation parameters LYI, . . . , azn coincide, it is possible to 
perform orthogonal transformations (3.3) in the corresponding subspace without altering 
the commutation relations (4.1) This allows further parameters in the matrix C2 (see 
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equation (3.10)) to be eliminated. In particular if all deformation parameters coincide, 
one can always transform the matrix 51 to the block-diagonal form 

0 w.1 
- w . z  0 i 

0 wT-1,zn 

-%I-I,zn 0 
Hence for equal deformation parameters the generalized Hamiltonian (2.1) (together with 
the zero mode condition (3.1)) always decomposes into a sum of n decoupled isotropic X Y  
chains of the form (1.2). However, the normalizations and deformation parameters q of 
each copy may be different. 

If only m < 2n deformation parameters coincide (while the others are pairwise distinct), 
similar considerations show that one can remove i(m2 - m)  parameters in the matrix R by 
means of O(m) transformations. 

5. A special physical example 

In this section we want to illustrate our results in the example of the chain (1.18), We only 
consider a special choice of the coupling constants oij to be defined below. This choice 
is motivated by physical reasons as follows. Thinking of two coupIed X Y  chains and 
neglecting the influence of the deformation parameters we suppose the internal interactions 
of each chain to have the same strength (w12 = w34 = I ) .  On the other hand there are 
couplings between both chains which can be controlled by a single parameter 6 ,  Since 
within each X Y  chain only X-X and Y-Y interactions are present, we assume for physical 
reasons the same to be true for the interactions between both chains, i.e. we exclude X -  
Y interactions by setting w13 = y 4  = 0. Therefore taking care of the signs in (1.18) a 
physically reasonable choice of the coupling constant is 

642 = W N  = 1 w,4 = - 0 2 3  = 6 w13 = -4 = 0. (5.1) 

The spectrum of the resulting Hamiltonian H ( y l ,  yz, y3, y4 , t )  is invariant under f -+ -5 
(to see that, consider the algebra automorphism U?' -+ -upy and U; + U;). 

Let us first consider the case where all deformation parameters y~ = n = y3 = y4 = y 
are equal. As shown in figure 1. the spectrum of H depends linearly on 5 in this case, For 
6 = 0 the spectrum is just the sum of two identical isotropic X Y  chains 

J .  

H ( y ,  y ,  Y ,  y. 0) = H X Y ( I ,  y 2 )  8 1 + 1 8  H X Y ( l ,  y z )  (5.2) 
where H X Y ( q ,  q )  is given in (1.2) and '=' denotes equality up to similarity transformation. 
Looking at figure 1 it is obvious that for arbitrary .$ only the normalizations of the two X Y  
chains vary linearly: 

H ( Y , Y , Y , Y , . $ ) =  (1 + t ) H X Y ( I , y Z ) @ l + ( l  - t ) 1 8 H X Y ( 1 , y Z ) ,  (5.3) 
Thus for equal deformation parameters the generalized chain (5.3) always decouples into a 
sum of two isotropic X Y  chains in agreement with the observation in (4.8). In particular for 
.$ = 3z1 only one of them survives so that each level of the spectrum is at least ZLt'-fold 
degenerated. Here the Hamiltonian (5.3) is invariant under local rotations generated by the 
anticommuting operators 
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.I - -  
Figure 1. Spectrum of H(4,  4, 3 ,  3 ,  e )  for thee sites 

E 

Figure2 SpeemmoEH(~,~,~.$.~) forthreesites. 

We will come back to this case below. 

XY chain spectra (see figure 2). The only exceptions are g = 0 and 
case we have 

H ( Y I ,  YZ, ~ 3 ,  ~ . i g  0) = H (YI Yz, Y I M )  @ 1 + 1 @ H (Y3 Y43  MY^) 

For arbitrary deformation parameters the spectrum cannot be decomposed into a sum of 
= kl. In the first 

(5.5) 
in agreement with ( M I ) ,  For g = i l  the spectrum of H coincides (up to degenerations) 
with the spectrum of a single anisotropic X Y  chain: 

(5.6) 

XY -1  XY -1 

H ( y i ,  YZ. ~ 3 ,  ~ 4 ,  1) = 2 H X Y h ,  4 )  @ 1. 
Here 9 and q are solutions of the trigonometric equations 
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where Aj = ;(q + a;’) = 4($ + y;’). In order to prove (5.6) we checked that 
the Hamiltonian H ( y l ,  y2. n, ~ 4 .  1) = Z x j ” = ; ’ h j  satisfies the algebraic relations of the 
anisotropic X Y chain 161 

[hjhjilhj - h j i ~ h j h j ~  + (U - l)(hj - h j i ~ ) ] ( h j  - h j i l )  = P (5.9) 
h z = v .  I (5.10) 

Hence for arbitrary deformation parameters a special tuning of the coupling constants (due 
to the choice = &l) provides a strong symmetry. The spectrum is equivalent to that 
of a single anisotropic X Y  chain and each level is at least 2‘+’-fold degenerated. The 
corresponding symmetry operators read 

(5.11) 

[LY, HI = 0 
and may be understood as L - 1 additional zero modes. Together with the four zero mode 
generators T: they cause ZLfl-fold degenerations of each level. 

The most important property of the zero modes (5.1 1) is that they act only in a part of 
the chain extending from the left boundary to a certain position j. Similarly, there are zero 
mode operators acting from position j + 1 to the right boundary 

Because of Ly + Rf = a;”- jTt  - ~ k f ; ’ T t + ~  only one set of operators (e.g. (Ly)) is 
independent. It is easy to check that for all deformation parameters being equal one retieves 
the local symmetry operators (5.4) by taking appropriate linear combinations. 

As already mentioned in section 3, the existence of exponential modes is a well known 
property of integrable chains with non-periodic boundary conditions. Normally there are 
only four exponential modes in our model, namely the zero modes (3.7). These modes act 
globally. Contrarily the additional zero modes (5.11) and (5.12) act only to the left and to 
the right of a certain position, respectively. To ow knowledge this phenomenon has not 
been observed before. It has its origin in a singularity of the interaction (det(S2) = 0) for 
4 = &I. Roughly speaking this singularity of the interaction allows certain modifications of 
the states at site j which do not affect the situation at site j + 1. Therefore if one combines 
exponential modes in a appropriate way they ‘trickle away’ at a certain position. 

6. Conclusions 

The present work is based on previous investigations of the anisotropic XY chain in a 
magnetic field with a special kind of boundary conditions. These boundary conditions imply 
the existence of a fermionic zero mode which is related to a quantum group symmetry 

In this article we found a class of integrable quantum chains which can be understood as 
generalizations of the X Y  chain. These 2n-state models are defined on n fermionic degrees 
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of freedom per site and can be diagonalized in terms of free fermions as well. In analogy 
to the X Y  chain case we found a general condition for the existence of fermionic zero 
modes. This condition in turn implies that the Hamiltonian is invariant under a 2n-parameter 
deformation of the 2n-dimensional Clifford algebra and causes 2"-fold degenerations of 
each energy level. Discussing the structure of this algebra we observed that if some of 
the deformation parameters coincide, the symmetry of the chain is increased by means of 
orthogonal algebra automorphisms leading to higher degenerations of the spectrum. 

The structure of the quantum group allows complicated internal couplings to be 
implemented. These couplings are non-trivial in the sense that the spectrum of such a 
chain cannot be decomposed into a sum of XY chain spectra. As an example we discussed 
a four-state model and computed the corresponding spectrum. In this case one can think 
of two XY chains with nearest-neighbour couplings between them. The corresponding 
Hamiltonian depends on ten parameters, four of them being deformation parameters of the 
Clifford algebra. We restricted our attention to a special choice of the other six parameters 
which is supposedly the most physical one (we allow only X X  and YY couplings between 
the chains) and illustrated our results. For a special tuning of the coupling constants the 
interaction matrix becomes singular and the spectrum coincides with that of a single XY 
chain. However, the degenerations are much larger due to the existence of L - 1 additional 
zero modes. In contrast to usual exponential modes. zero modes of this kind act only in a 
particular part of the chain extending from the left boundary to a certain position. 
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Appendix. Discrete symmetry transformations 

Beside the quantum group invariance the anisotropic XY chain (1.2) possesses a further 
important symmetry. Diagonalizing the Hamiltonian (1.2) one observes that the exchange of 
the parameters q and q does not modify the spectrum. In [I71 we derived the corresponding 
similarity transformation 

and showed that U reduces in a special limit to the king duality transformation. For this 
reason we denoted the transformation (Al) as 'generalized duality transformation' (although 
the XY chain is not self-dual in the usual sense). In this section we show that a similar 
symmetry exists in the case of generalized chains of the form (2.1) obeying the zero mode 
condition (3.1). 

We first notice that in the XY chain case the transformation (AI) just inverts the 
deformation parameter or1 + or;' while 012 is not changed (in the same way it is possible 
to construct a similarity transformation which inverts or2 and keeps or1 fixed). Then looking 
at the fermionic excitation energies (3.12) of the generalized Hamiltonian (1.18) with two 
fermionic degrees of freedom per site we recognize that the inversion of any deformation 
parameter ap cf or;] (p = 1, . . . ,4) does not alter the spectrum. We therefore expect this 
observation to hold for arbitrary n, i.e. using the notation of (3.9) we assume that for every 
~ = 1 ,  ..., 2n wehave 

(-42) H ( o r l , .  . . , or;], ...,(Yzn, n) = H(a,, . . . , o r p , .  . . ,orzn, n). 
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In analogy to the results of [ 171 it turns out that the corresponding similarity transformation 
depends exclusively on the deformation parameter it is inverting: 

H(LY,, . . ., a;], . . . , (YZ", Q) = U(cu,)H(oll, ...,tY,, . . . ,abr Q)U-'(a,). (A3) 
Denoting 

this transformation can be written in terms of a 'time-ordered' exponential 

where G, is a non-local generator 

G , =  r i r ; .  
1 G  c h < L  

T is an ordering operator defined by 

Explicitly the transformation U@,) is given by the polynomial 

where [ L I Z ]  denotes the truncation of L / 2  to an integer number. It is an orthogonal 
transformation and its inverse is given by 

(A% u(a,)-l = U(Or,)+ = u(ff;'). 
Therefore U@,) reduces to the identity if the deformation parameter in question is equal 
to one. Because of [G, ,  G,] = 0 the transformations U(a, )  commute for different p and 
can be combined freely. Notice that for non-generic deformation parameters (a; = kl) the 
transformation U(a,) does not exist since the normalization N,, diverges. For that reason 
the transformation nz=, U(a,) must not be confused with the action of the R matrix of 
the quantum group which inverts the deformation parameters as well. 

It is well known in the theory of quantum groups that the inversion of a deformation 
parameter corresponds to an algebra homomorphism. The transformation (A5) shows that 
the same is true for the whole physical system. It should be emphasized that it relates 
different physical situations (e.g. disordered and frozen states). If the deformation parameter 
in question is equal to one, the system undergoes a massless phase transition. Two types 
of transitions are possible. If the dispersion of the massless excitations is linear in k ,  we 
have a criticial king transition, otherwise if the dispersion is quadratic in k ,  we observe a 
Pokrovsky-Talapov phase transition. 
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